Codeforces750E

Codeforce 750E

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#include <bits/stdc++.h>//codeforce 750E(https://codeforces.com/contest/750/problem/E)
using namespace std;
const int maxn = 1000050;
typedef pair<int, int> P;
typedef long long ll;
const int inf = 0x3f3f3f3f;
char S[maxn];
int g[maxn][5][5];
char str[6] = "2019";
int ans[5];
int pa(int i, int j, char c) //
{
if (i == 4)
return c == '8';
if (j > i + 1)
return inf;
if (i < j)
{
if (c != str[i])
return inf;
return 0;
}
if (i == 3 && c == '8')
return 1;
return c == str[i];
}

void init(int k, int l, int r) // 初始化线段树,线段树节点维护的内容是
{
if (l == r)
{
for (int i = 0; i <= 4; ++i)
for (int j = i; j <= 4; ++j)
g[k][i][j] = pa(i, j, S[l - 1]);
return;
}
int mid = (l + r) / 2, ls = k * 2, rs = k * 2 + 1;
init(ls, l, mid);
init(rs, mid + 1, r);
for (int i = 0; i <= 4; i++)
for (int j = i; j <= 4; j++)
{
g[k][i][j] = inf;
for (int k1 = i; k1 <= j; k1++)
{
int l1 = g[ls][i][k1];
int r1 = g[rs][k1][j];
g[k][i][j] = min(g[k][i][j], l1 + r1);
}
}
}

void query(int k, int s, int e, int l, int r)
{
if (l <= s && e <= r)
{
int aa[5];
for (int i = 0; i <= 4; i++)
{
aa[i] = inf;
for (int j = 0; j <= i; j++)
aa[i] = min(aa[i], ans[j] + g[k][j][i]);
}
for (int i = 0; i <= 4; i++)
ans[i] = aa[i];
return;
}
int mid = (s + e) / 2, ls = k * 2, rs = k * 2 + 1;
if (l <= mid)
query(ls, s, mid, l, r);
if (r > mid)
query(rs, mid + 1, e, l, r);
}

char s[maxn];

int main()
{
int n,m,i,l,r;
scanf("%d %d %s", &n, &m, s);
for(int i=0; i<n; i++)
S[i]=s[n-i-1];

init(1, 1, n);

while (m--)
{
scanf("%d%d", &l, &r);
l=n-l+1;
r=n-r+1;
swap(l,r);
for (i = 0; i <= 4; i++)
ans[i] = inf;
ans[0] = 0;
query(1, 1, n, l, r);
if(ans[4]>n)
printf("-1\n");
else
printf("%d\n",ans[4]);
//printf("%d\n", ans[4] > n ? -1 : ans[4]);
}
return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
//codeforce 750E(https://codeforces.com/contest/750/problem/E)
#include <bits/stdc++.h>
#define N 200005
#define inf 0x3f3f3f3f
#define lc (p << 1)
#define rc (p << 1 | 1)
#define mid (T[p].l + T[p].r >> 1)
using namespace std;
struct Node
{
int l, r, f[5][5];
inline void create(int x) //初始化线段树
{
for (int i = 0; i <= 4; ++i)
for (int j = 0; j <= 4; ++j)
f[i][j] = (i == j ? 0 : inf);
//用f[i][j]表示从状态i转移到状态j所需的最小费用
switch (x)
{
case -1:
{
for (int i = 0; i <= 4; ++i)
f[i][i] = inf;
break;
}
case 2:
{
f[0][0] = 1, f[0][1] = 0;
break;
}
case 0:
{
f[1][1] = 1, f[1][2] = 0;
break;
}
case 1:
{
f[2][2] = 1, f[2][3] = 0;
break;
}
case 7:
{
f[3][3] = 1, f[3][4] = 0;
break;
}
case 6:
{
f[3][3] = 1, f[4][4] = 1;
break;
}
}
}
} T[N << 2];
int n, m, num[N];
char s[N];
inline Node merge(Node a, Node b)
{
Node ret;
ret.create(-1);
ret.l = a.l, ret.r = b.r;
for (int i = 0; i <= 4; ++i)
for (int j = 0; j <= 4; ++j)
for (int k = 0; k <= 4; ++k)
ret.f[i][j] = min(ret.f[i][j], a.f[i][k] + b.f[k][j]);
return ret;
}
inline void build(int p, int l, int r)
{
T[p].l = l, T[p].r = r;
if (l == r)
{
T[p].create(num[l]);
return;
}
build(lc, l, mid), build(rc, mid + 1, r);
T[p] = merge(T[lc], T[rc]);
}
inline Node query(int p, int ql, int qr)
{
if (ql <= T[p].l && T[p].r <= qr)
return T[p];
if (qr <= mid)
return query(lc, ql, qr);
if (ql > mid)
return query(rc, ql, qr);
return merge(query(lc, ql, mid), query(rc, mid + 1, qr));
}
int main()
{
scanf("%d%d%s", &n, &m, s + 1);
for (int i = 1; i <=n; ++i)
num[i] = s[i] - '0';
// for(int i=1 ;i<=n ;++i)
// printf("%d",num[i]);
// puts("");
build(1, 1, n);
while (m--)
{
int l, r;
scanf("%d%d", &l, &r);
// l = n + 1 - l;
// r = n + 1 - r;
// swap(l, r);
// cout << l << ' ' << r << endl;
Node ans = query(1, l, r);
printf("%d\n", ans.f[0][4] == inf ? -1 : ans.f[0][4]);
}
return 0;
}
0%